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SUMMARY

The mechanisms by which neutralizing antibodies
inhibit Marburg virus (MARV) are not known. We iso-
lated a panel of neutralizing antibodies from a human
MARV survivor that bind to MARV glycoprotein (GP)
and compete for binding to a single major antigenic
site. Remarkably, several of the antibodies also
bind to Ebola virus (EBOV) GP. Single-particle EM
structures of antibody-GP complexes reveal that all
of the neutralizing antibodies bind to MARV GP at
or near the predicted region of the receptor-binding
site. The presence of the glycan cap or mucin-like
domain blocks binding of neutralizing antibodies to
EBOV GP, but not to MARV GP. The data suggest
that MARV-neutralizing antibodies inhibit virus by
binding to infectious virions at the exposedMARV re-
ceptor-binding site, revealing a mechanism of filovi-
rus inhibition.
INTRODUCTION

Marburg virus (MARV) and Ebola virus (EBOV), which are mem-

bers of the family Filoviridae, infect humans and non-human pri-

mates, causing a hemorrhagic fever with mortality rates up to

90% (Brauburger et al., 2012). There have been a dozen out-

breaks of Marburg virus infection in humans reported to date,

including the most recent report from Uganda of a 30-year-old

male health worker who died in September 2014 (WHO,

2014a). As of January 7, 2015, there have been in excess of

20,000 confirmed, probable, and suspected cases of Ebola virus

disease (EVD) in the current EBOV outbreak in nine affected

countries (Guinea, Liberia, Mali, Nigeria, Senegal, Sierra Leone,
Spain, the United Kingdom, and the United States of America),

with more than 8,000 deaths (WHO, 2014b).

There is no licensed treatment or vaccine for filovirus infection.

Recently, several studies showed that filovirus glycoprotein

(GP)-specific neutralizing antibodies (nAbs) can reduce mortality

following experimental inoculation of animals with a lethal dose

of EBOV (Dye et al., 2012; Marzi et al., 2012; Olinger et al.,

2012; Qiu et al., 2012, 2014; Pettitt et al., 2013) or MARV (Dye

et al., 2012). The primary target of these nAbs, the filovirus sur-

face GP, is a trimer composed of three heavily glycosylated

GP1-GP2 heterodimers (Figure S1). The GP1 subunit can be

divided further into base, head, glycan cap, and mucin-like do-

mains (Lee et al., 2008). During viral entry, the mucin-like domain

and glycan capmediate binding to multiple host attachment fac-

tors present on the cell membrane. After the virus enters the host

cell by macropinocytosis (Nanbo et al., 2010; Saeed et al., 2010),

the GP is cleaved by host proteases that remove approximately

80% of the mass of the GP1 subunit, including the mucin-like

domain and glycan cap (Chandran et al., 2005; Dube et al.,

2009). After cleavage of GP in the endosome, the receptor-bind-

ing sites on GP become exposed, and the GP1 head then is able

to bind to its receptor, Niemann-Pick C1 (NPC1) protein (Carette

et al., 2011; Chandran et al., 2005; Côté et al., 2011). Subsequent

conformational changes in GP facilitate fusion between viral and

endosomal membranes.

The dense clustering of glycans on the glycan cap and mucin-

like domain likely shield much of the surface of EBOV GP from

humoral immune surveillance, leaving only a few sites on the

EBOV GP protein at which nAbs could bind without interference

by glycans (Cook and Lee, 2013). Most of our knowledge about

humoral response against filovirus infections has come from

studies of murine Abs that recognize EBOV GP. From those

studies, we learned that mouse nAbs preferentially target pep-

tides exposed in upper, heavily glycosylated domains or lower

areas (the GP1 base), where rearrangements occur that drive
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fusion of viral and host membranes (Saphire, 2013). Abs have not

been identified that target protein features of the GP1 head sub-

domain, where the receptor-binding site to NPC1 protein is

located. Ab KZ52, the only reported human EBOV GP-specific

mAb, was obtained from a phage display library that was con-

structed from bone marrow RNA obtained from a survivor

(Maruyama et al., 1999). KZ52 binds a site at the base of the

GP and neutralizes EBOV,most likely by inhibiting the conforma-

tional changes required for fusion of viral and endosomal mem-

branes (Lee et al., 2008). Some murine Abs also have been

reported to bind to the base region of Ebola virus GPs (Dias

et al., 2011, Murin et al., 2014). In contrast, very little is known

about the mechanisms by which Abs neutralize MARV. Two mu-

rine Abs that bound the mucin-like domain of MARV GP reduced

MARV budding from infected cells in culture but failed to

neutralize virus directly (Kajihara et al., 2012). Polyclonal

MARV-specific Abs were shown to protect non-human primates

when administrated passively after challenge (Dye et al., 2012).

The epitopes recognized by such polyclonal nAbs, and the

mechanism of neutralization by which these Abs act, are un-

known. In this study, we isolated a large panel of human nAbs

from B cells of a human survivor of severe MARV infection and

used these Abs to define the molecular basis of MARV neutrali-

zation by human Abs. The results show that MARV nAbs recog-

nize the NPC1 receptor-binding domain of MARV GP and, in

some cases, also recognize conserved structural features in

the equivalent receptor-binding domain on EBOV GP.

RESULTS

Isolation of Monoclonal Antibodies
We tested plasma of a MARV survivor previously infected in

Uganda for the 50% neutralization activity against the Uganda

strain of MARV and found a serum-neutralizing titer of 1:1,010.

To generate human hybridoma cell lines secreting mAbs to

MARV, we screened supernatants from EBV-transformed B

cell lines derived from the survivor for binding to several recom-

binant forms of MARV GP or to irradiated cell lysates prepared

from MARV-infected cell cultures. We fused transformed cells

from B cell lines producing MARV-reactive Abs to the MARV

antigens with myeloma cells and generated 51 cloned hybrid-

omas secreting MARV-specific human mAbs. Thirty-nine of

these mAbs were specific to the MARVGP, while 12 bound to in-

fected-cell lysate, but not to GP; these latter mAbs were shown

in secondary screens to bind to MARV internal proteins (NP,

VP35, or VP40; data not shown). Analysis of the Ab heavy- and

light-chain variable domain sequences revealed that all MARV-

specific mAbs were encoded by unique Ab genes.

Neutralization Activity
To evaluate the inhibitory activity of themAbs, we first performed

in vitro neutralization studies using a chimeric vesicular stomati-

tis virus with MARV GP from Uganda strain on its surface (vesic-

ular stomatitis virus/Marburg glycoprotein recombinant VSV/

GP-Uganda). Eighteen of the 39 MARV GP-specific mAbs ex-

hibited neutralization activity against VSV/GP-Uganda (Figures

1A and 1C; Figures S2 and S4). Of those 18 nAbs, 9 displayed

strong (IC50 < 10 mg/ml), 8 nAbs displayed moderate (IC50: 10–
894 Cell 160, 893–903, February 26, 2015 ª2015 Elsevier Inc.
99 mg/ml), and one displayed weak (IC50: 100–1,000 mg/ml)

neutralizing activity against VSV/GP-Uganda. We also tested

the neutralization potency of all nAbs that bound to MARV GP

in a plaque reduction assay using live MARV-Uganda virus. Of

18 Abs that neutralized VSV/GP-Uganda, 11 Abs exhibited

neutralizing activity against MARV-Uganda (Figures 1A and 1C;

Figures S3 and S4). These data suggest that VSV/GP, often

used to study neutralizing potency of Abs because of its BSL-2

containment level, is more susceptible to Ab-mediated neutrali-

zation than live MARV. This difference is likely explained by the

significantly lower copy number of MARV GP molecules that

incorporate into VSV particles compared with the large number

of GP molecules on the surface of filovirus filaments (Beniac

et al., 2012; Thomas et al., 1985). Comparison of MARV-neutral-

izing and non-neutralizing antibodies at concentration up to

1.6 mg/ml revealed dose-dependent activity of those mAbs

that neutralized. The neutralization activity of nAbs was not

enhanced by the presence of complement (data not shown).

As expected, we did not detect neutralizing activity for any of

the 12 Abs specific to MARV NP, VP35, or VP40 proteins.

Recognition of Varying Forms of GP
To characterize the binding of isolated Abs to recombinant

MARV GPs, we performed binding assays using either a recom-

binant MARV GP ectodomain containing the mucin-like domain

(MARVGP) or a recombinant GP lacking residues 257–425 of the

mucin-like domain (MARV GPDmuc). Based on OD405 values at

the highest Ab concentration tested (Emax) and 50% effective

concentration (EC50), we divided the MARV-GP-specific Abs

into four major groups, based on binding phenotype (designated

binding groups 1, 2, 3A, and 3B; Figures 1B and S5). Binding

group 1 mAbs had an Emax to GP <2 (i.e., these mAbs never ex-

hibited a maximal binding level to MARV GP); binding group 2

mAbs had an Emax to GP >2, with EC50 for GP <EC50 for GPDmuc

(i.e., these mAbs bound to the mucin-like domain or glycan cap);

and binding group 3 had an Emax to GP >2, with EC50 for

GP zEC50 for GPDmuc (i.e., these mAbs bound equally well to

full-length and mucin-deleted forms of GP), with the group 3A

mAbs having an EC50 for GP <0.5 mg/ml and the group 3B

mAbs having an EC50 for GP >0.5 mg/ml (suggesting that, as a

class, the group 3B mAbs possess a lower steady-state KD of

binding to GP than did group 3A mAbs).

Abs that lacked neutralization activity against VSV/GP-

Uganda or MARV-Uganda fell principally into binding groups 1,

2, and 3A. Interestingly, all VSV/GP-Uganda nAbs displayed a

unique binding pattern and segregated into binding group 3B

(Figure 1C). It was interesting that while both mAbs from groups

3A and 3B bound equally well to the full-length MARV GP and to

the GPDmuc, EC50 values for nAbs from binding group 3B were

higher than those for non-neutralizing Abs from group 3A.

Competition-Binding Studies
To determine whether mAbs from distinct binding groups tar-

geted different antigenic regions on the MARV GP surface, we

performed a competition-binding assay using a real-time

biosensor. We tested 18 MARV nAbs from binding group 3B, 4

Abs from binding group 3A, and 1 Ab from binding group 2 in a

tandem blocking assay in which biotinylated GPDmuc was
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Figure 1. MARV-Neutralizing mAbs Display a Unique Binding Pattern and Target a Distinct Antigenic Region on the GP Surface

(A) Neutralization activity of MR77 (non-neutralizing antibody) or MR213 (neutralizing antibody) against VSV/GP-Uganda (red circles) or MARV-Uganda (black

circles). Error bars represent the SE of the experiment performed in triplicate.

(B) Binding of representative mAbs from four distinct binding groups to the MARV GP (blue squares) or MARV GPDmuc (green squares). A dotted line indicates

0.5 mg/ml threshold for categorizing group 3 antibodies as possessing low (3A) or high (3B) EC50 values.

(C) Heatmap showing the neutralization potency of MARV GP-specific mAbs against VSV/GP-Uganda or MARV-Uganda. The IC50 value for each virus-mAb

combination is shown, with dark red, orange, yellow, or white shading indicating high, intermediate, low, or no potency, respectively. IC50 values greater than

1,000 mg/ml are indicated by >. Neutralization assays were performed in triplicate.

(D) Data from competition binding assays using mAbs from binding groups 2, 3A, or 3B. Numbers indicate the percent binding of the competing mAb in the

presence of the first mAb, compared to binding of competing mAb alone. MAbs were judged to compete for the same site if maximum binding of the competing

mAb was reduced to <30% of its un-competed binding (black boxes with white numbers). MAbs were considered non-competing if maximum binding of the

competing mAb was >70% of its un-competed binding (white boxes with red numbers). Gray boxes with black numbers indicate an intermediate phenotype

(between 30 and 70% of un-competed binding).

See also Figures S2, S3, S4, and S5.
attached to a streptavidin biosensor. Abs from group 1 and the

two non-neutralizing Abs from binding group 3B did not bind

to biotinylated GPDmuc in the competition assay and were

excluded from the analysis. While non-neutralizing Abs from
binding groups 2 and 3A did not prevent binding of the binding

group 3B nAbs to GPDmuc, all nAbs blocked binding of each

of the other nAbs to the antigen and segregated into a single

competition-binding group (Figure 1D). These data suggested
Cell 160, 893–903, February 26, 2015 ª2015 Elsevier Inc. 895
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Figure 2. Neutralizing Antibodies from a Human Survivor of MARV Bind to the Receptor-Binding Site of GP at Two Distinct Angles of

Approach

(A) Representative reference-free 2D class averages of the MARV GPDMuc:MR Fab complexes.

(B) EM reconstructions of seven Fab fragments of neutralizing antibodies bound to MARV GPDmuc (side views). All seven antibodies target a similar epitope on

the top of GP.

(C) These antibodies can be subdivided based on their angles of approach: (1) those that bind toward the top and side of GP1 at a shallow angle relative to the

central 3-fold axis (MR72 in red, MR78 in orange, MR201 in yellow, or MR82 in green) and (2) those that bind at a steeper angle toward the top of GP1 (MR191 in

cyan, MR111 in blue, or MR198 in purple).

(D) The crystal structure of EBOV GPDmuc (GP1 in white and GP2 in dark gray) is modeled into the MARV GP density (mesh), and the angles of approach of the

neutralizing antibodies are indicated with arrows, colored as in (B). The footprint of the antibodies is indicated by a black circle targeting residues in the putative

receptor-binding site (RBS) through a variety of approach angles.

See also Figure S1.
that all of the nAbs target a single major antigenic region on the

MARV GP surface.

Electron Microscopy Studies of Antigen-Antibody
Complexes
To determine the location of the antigenic region targeted by

MARV nAbs, we performed negative stain single-particle elec-

tron microscopy (EM) studies using complexes of GPDmuc

with Fab fragments of seven nAbs from Binding Group 3B. The

EM reconstructions clearly showed that Fab fragments for all

seven nAbs bind at the top of the GP in or near the NPC1 protein

receptor-binding site (Figures 2A and 2B). The binding pattern of

these Abs could be divided further into two major groups based

on their relative angle of approach to the GP head domain. MAbs

MR72, MR78, MR201, andMR82 bound toward the top and side

of GP1 at a shallow angle relative to the central 3-fold axis, while
896 Cell 160, 893–903, February 26, 2015 ª2015 Elsevier Inc.
mAbs MR191, MR111, and MR198 bound at a steeper angle

toward the top of GP1 (Figures 2C and 2D). When we compared

IC50 values for nAbs that bound in the two binding poses, we did

not detect a significant difference in neutralization potency

based on the angle of approach (Figure 1C).

Antibody Neutralization Escape Mutant Viruses
As an additional strategy to determine residues on MARV GP

involved in binding to nAbs, we generated VSV/GP-Uganda

variant viruses that escaped neutralization, and then we deter-

mined the sequence of the GP of those mAb escape viruses.

Vero E6 cells were inoculated with VSV/GP-Uganda in the pres-

ence of MR72 or MR78 nAbs. Two escape mutant viruses were

isolated: virus variant VSV/GP-72.5 contained three missense

mutations in the MARV GP gene (N129S in the putative NPC1 re-

ceptor-binding site, S220P in the glycan cap and P455L in the
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(A) VSV-MARV-72.5 (dotted lines) or VSV-MARV-

78.1 (dashed line) escape mutations mapped onto

the domain schematic of MARV GP. RBS, receptor

binding site; GLC, glycan cap; MUC, mucin-like

domain.

(B) Neutralization activity of antibodies from bind-

ing group 3B against wild-type VSV/GP-Uganda

(circles, straight curves), VSV/GP-72.5 (squares,

dotted curves), or VSV/GP-78.1 (triangles, dashed

curves) escape mutant viruses.
mucin-like domain), and virus variant VSV/GP-78.1 possessed

missense mutation C226Y in the glycan cap (Figure 3A). Consis-

tent with the EM data, six out of seven nAbs tested displayed a

higher level of neutralization activity against the wild-type VSV/

GP-Uganda than to the VSV/GP-72.5 or VSV/GP-78.1 escape

mutant viruses, suggesting these nAbs recognize MARV GP in

a similar fashion (Figure 3B). MAb MR198 exhibited equal

neutralization potency against wild-type VSV/GP-Uganda or

the two escape mutant viruses (Figure 3B). As all nAbs segre-

gated into one competition group (Figure 1D), bound the

MARV GP at the NPC1 receptor-binding site (Figures 2A–2D),

and displayed a similar profile of neutralization of escape mutant

viruses (Figure 3B), we propose that blocking of MARV GP bind-

ing to NPC1 is the principal mechanism of MARV neutralization

by these naturally occurring human Abs. Thismodel is supported

by the data in the accompanying paper by Hashiguchi et al.

(2015; this issue of Cell) showing that MR78 inhibits binding of

NPC1 domain C to MARV GP.

Cross-Reactive Binding of MARV Antibodies with
EBOV GP
It is surprising that human MARV nAbs recognize the putative

NPC1 protein receptor-binding site on GP, since previous

studies suggested that the NPC1 protein receptor-binding site

on EBOV GP may be obscured from Ab binding by the presence

of the highly glycosylated glycan cap and mucin-like domain
Cell 160, 893–903,
(Lee et al., 2008). To determine whether

the MARV nAbs we isolated also could

bind in a cross-reactive manner to the

EBOV GP receptor-binding site, we per-

formed ELISA using three recombinant

forms of MARV and EBOVGPs: full-length

GP ectodomain containing the glycan

cap and mucin-like domain (designated

MARV or EBOV GP), ectodomains lacking

residues 257–425 (MARV) or 314–462

(EBOV) of the mucin-like domain (desig-

nated MARV or EBOV GPDmuc), and

cleaved GP ectodomains enzymatically

treated to remove the mucin-like domain

and glycan cap (designated MARV or

EBOV GPcl). Three of the MARV nAbs,

designated MR78, MR111, and MR191,

recognized the EBOV GPcl that lacked
the glycan cap and mucin-like domain (Figure 4A). Remarkably,

the MARV nAb MR72 bound all three forms of both EBOV and

MARV GPs with similar EC50 and Emax values, indicating that

its epitope, and the EBOV receptor-binding site, which it likely

overlaps, might be partially accessible for Ab binding even in

the full-length form (Figure 4A). We tested the breadth of neutral-

ization of MARV nAbs for filoviruses using a panel of different

MARV and EBOV isolates. While multiple MARV Abs displayed

neutralizing activity toward different MARV strains, MARV nAbs

did not exhibit detectable neutralization activity against EBOV

or VSV/EBOV (Figure 4B). Structural analysis of MARV and

EBOV GP in the accompanying paper by Hashiguchi et al.

(2015) reveals that the glycan cap and mucin-like domain likely

obscure the receptor-binding domain in EBOV, but not in MARV.

In Vivo Testing
We tested the in vivo protective activity of the mAbs in a murine

model using mouse-adapted MARV strain Ci67 (Warfield et al.,

2007, 2009). Inoculation of mice with MARV Ci67 causes clinical

disease and, in a proportion of animals, causes lethal disease,

although typically less than 100% lethality in mice (Warren

et al., 2014). We selected four of the mAbs among those with

the lowest in vitro neutralization IC50 values: MR72, MR82,

MR213, and MR232. The IC50 values in neutralization assays

with MARV Uganda or mouse-adapted MARV strain Ci67 were

comparable (within 2-fold). Seven-week-old BALB/c mice were
February 26, 2015 ª2015 Elsevier Inc. 897



A B Neutralization (µg/mL)Binding (µg/mL)

GP GP muc GPcl  GP GP muc  GPcl

MR65 8.3 7.5 5.0 > > >
MR72 3.0 4.7 0.8 6.1 2.1 <0.1
MR78 1.4 2.3 1.1 > > 107.4
MR82 1.0 1.5 0.5 > > >

MR103 8.8 14.2 4.8 > > >
MR111 2.5 4.3 1.5 > > 21.5
MR144 8.1 8.0 3.3 > > >
MR186 1.3 0.9 0.5 > > >
MR191 2.5 5.1 1.4 > > <0.1
MR198 1.4 1.4 0.8 > > >
MR201 1.5 1.9 0.5 > > >
MR208 5.6 7.3 2.8 > > >
MR209 4.0 5.4 2.0 > > >
MR213 2.8 3.6 1.1 > > >
MR229 1.8 2.9 1.2 > > >
MR232 2.0 1.3 0.5 > > >
MR238 6.8 11.7 4.9 > > >
MR241 2.2 4.0 1.2 > > >

mAb
MARV EBOV

VSV/GP- 
Musoke

VSV/GP- 
Uganda

MARV- 
Musoke

MARV- 
Uganda

MARV- 
Angola

MARV-
Ravn

VSV/GP- 
EBOV EBOV

MR65 31.0 224 > > 214 > > >
MR72 3.6 13.4 > 601 > 368 > >
MR78 3.8 4.5 > 93 > 286 > >
MR82 1.8 7.4 234 288 184 185 > >

MR103 16.5 27.5 > 291 > > > >
MR111 12.2 7.9 370 414 > 444 > >
MR144 43.1 37.3 900 > > 354 > >
MR186 1.5 1.5 24 > 97 64 > >
MR191 5.5 6.2 441 > 413 > > >
MR198 2.7 11.6 290 206 128 30 > >
MR201 6.6 8.0 343 572 358 832 > >
MR208 13.8 54.9 896 > > 106 > >
MR209 4.2 12.2 577 402 > 93 > >
MR213 7.6 9.7 > 305 207 121 > >
MR229 5.1 7.3 103 215 110 59 > >
MR232 3.9 4.0 > 114 103 127 > >
MR238 11.9 10.2 264 > 416 > > >
MR241 2.7 11.9 376 > 162 > > >

MARV EBOV
mAb

Figure 4. Breadth of Binding or Neutralization of Human MARV-Specific mAbs for Diverse Filoviruses

(A) A heatmap showing the binding in ELISA of neutralizing mAbs from binding group 3B to the MARV and EBOV GPs. EC50 value for each antigen-mAb

combination is shown, with dark red shading indicating lower EC50 values and orange or yellow shading indicating intermediate or higher EC50 values. EC50 values

greater than 1,000 mg/ml are indicated by >.

(B) A heatmap showing the neutralization breadth of mAbs from binding group 3B. The IC50 value for each virus-mAb combination is shown, with dark red

shading indicating increased potency and orange or yellow shading indicating intermediate or low potency. IC50 values greater than 1,000 mg/ml are indicated

by >. Neutralization assays were performed in triplicate.
injected with 100 mg of antibody by the IP route and challenged

with 1,000 plaque-forming unit (PFU) of Ci67. Twenty-four hours

later, antibody treatment was repeated. By day 6, all five control

(untreated) mice developed progressive loss of weight and

symptoms of the disease, including dyspnea, recumbency,

and unresponsiveness, and on days 8 and 9, two animals were

found dead and one animal was foundmoribund and euthanized.

The remaining two animals demonstrated recovery by day 11. In

contrast, all animals treated with any antibody survived and did

not display the elevation of the disease score, with the exception

of two animals treated with MR72, which showed a transient

marginal loss of weight and increase of the disease score on

days 6–9, which did not exceed 1 (Figure 5). The observed level

of protection was remarkable given the relatively modest in-

vitro-neutralizing potency of the antibodies.

DISCUSSION

There is an obvious urgent need for prophylactic and therapeutic

interventions for filovirus infections given the recurrence of

MARV outbreaks, including that in Uganda in October 2014

and a massive outbreak of EBOV infections in West Africa

in 2014. There is very little information about the structural

determinants of neutralization on which to base the rational

selection of antibodies, and for MARV there have been no re-

ported human nAbs.

This study reveals that naturally occurring human MARV nAbs

isolated from the B cells of a recovered donor principally target

the MARV NPC1 protein receptor-binding site, suggesting that

a major mechanism of MARV neutralization could be inhibition

of binding to receptor. Remarkably, some of the isolated anti-
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bodies also bound to the EBOV GP. This mechanism of MARV

neutralization was unexpected, because previous studies with

EBOV showed that the putative receptor-binding domain on

GP is obscured on the surface of virions by the presence of the

glycan cap and mucin-like domain, only becoming exposed

following cleavage by cathepsin in the endosome. These studies

suggest that the configuration of the MARV GP differs signifi-

cantly from that of EBOV GP because the receptor-binding

domain must be accessible for immune recognition on MARV

GP. Indeed, determination of the structure of the MARV GP

and structural analysis of the interaction of mAb MR78 with

MARV and EBOV GP molecules shows this to be the case (see

Hashiguchi et al., 2015).

The information obtained from these studies can be used to

inform development of new therapeutics and structure-based

vaccine designs against filoviruses. Furthermore, as these

nAbs are fully human and exhibit inhibitory activity, they might

be useful as a component of a prophylactic or therapeutic

approach for filovirus infection and disease. The challenge

studies using amurine model here show clear evidence of in vivo

activity and suggest additional preclinical studies in other spe-

cies, such as guinea pigs and macaques, are warranted. Their

ability to bind a broad range of MARV isolates indicates they

may offer detection of or efficacy against new viral strains yet

to emerge. Although some of these mAbs bind to certain forms

of EBOV GP, these antibodies are not likely to be effective

against natural Ebola infection because the EBOV receptor-

binding site is obscured on the viral surface. However, such

mAbsmight neutralize EBOV if they could be delivered to the en-

dosome, where the EBOV receptor-binding site is exposed

following GP cleavage.
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Figure 5. Survival and Clinical Overview of Mice Treated with MARV mAbs

(A–C) Groups of mice at five animals per group were injected with individual mAbs by the intraperitoneal route twice: 1 hr prior and 24 hr after MARV challenge at

100 mg per treatment. Untreated animals served as controls. (A) Kaplan-Meier survival curves. (B) Body weight. (C) Illness score.
EXPERIMENTAL PROCEDURES

Donor

The donor was an otherwise healthy adult woman who contracted Marburg

virus (MARV) infection in 2008 following exposure to fruit bats in the Python

Cave in Queen Elizabeth National Park, Uganda. The donor’s clinical course

was documented previously (CDC, 2009). Peripheral blood from the donor

was obtained in 2012, four years after the illness, following informed consent.

The study was approved by the Vanderbilt University Institutional Review

Board.

Viruses

MARV strain 200702854 Uganda (MARV-Uganda) was isolated originally from

a subject designated ‘‘patient A’’ during the outbreak in Uganda in 2007 (CDC,

2009; Towner et al., 2009) and underwent four passages in Vero E6 cells.

MARV strain Musoke (MARV-Musoke) was isolated during the outbreak in

Kenya in 1980 (Smith et al., 1982) and passaged five times in Vero E6 cells.

MARV strain 200501379 Angola (MARV-Angola) was isolated during the

outbreak in Angola in 2005 (Towner et al., 2006) and passaged three times

in Vero E6 cells. MARV Ravn virus (Ravn) was isolated from a patient in 1987

in Kenya (Johnson et al., 1996) and passaged four times in Vero E6 cells. All

strains of MARV were obtained originally from the Special Pathogens Branch,

U.S. Centers for Disease Control (CDC), and deposited at theWorld Reference

Center of Emerging Viruses and Arboviruses (WRCEVA) housed at UTMB. The

recombinant Ebola Zaire strain Mayinga (EBOV) expressing eGFP was gener-

ated in our laboratory by reverse genetics (Lubaki et al., 2013; Towner et al.,

2005) from plasmids provided by the Special Pathogens Branch at CDC and

passaged three times in Vero E6 cells. For analysis of antibody binding by

ELISA, viruses were gamma-irradiated with the dose of 5 3 106 rad. The re-

combinant VSV in which the VSV/GP protein was replaced with that of

MARV strain Musoke (VSV/GP-Musoke) or EBOV strain Mayinga (Garbutt

et al., 2004) were provided by Dr. Thomas Geisbert (UTMB) and Dr. Heinz

Feldmann (NIH), respectively; a similar virus with GP from MARV (strain
200702854 Uganda) was constructed as described below. All work with

EBOV and MARV was performed within the Galveston National Laboratory

BSL-4 laboratories.

We used a mouse-adapted strain of MARV for testing the effect of mAbs

in vivo. The mouse-adapted Ci67 strain of Marburg virus (Warfield et al.,

2007) was provided by Dr. Sina Bavari (U.S. Army Medical Research Institute

of Infectious Diseases) and amplified by a single passage in Vero-E6 cells.

Generation of a Chimeric Strain of VSV in which VSV G Protein Was

Replaced with the GP Protein of MARV Strain Uganda

The plasmid pVSV-XN2 carrying cDNA of the full-length VSV anti-genome

sequence and the support plasmids pBS-N, pBS-L, and pBS-P encoding

the internal VSV proteins under control of the T7 promoter were kindly pro-

vided by Dr. John Rose (Yale University). The plasmid pC-T7, encoding the

T7 polymerase, was kindly provided by Dr. Yoshihiro Kawaoka (University of

Wisconsin). For generation of the VSV/GP-Uganda construct, Vero E6 cell

monolayers were inoculated with MARV strain 200702854, and total cellular

RNA was isolated and reverse transcribed. MARV GP open reading frame

(ORF) was PCR amplified from cDNA using forward primer 50-CATGTACG

ACGCGTCAACATGAGGACTA-30 and reverse primer 50-TCTAGCAGCTC

GAGCTATCCAATATATTTAGTAAAGATACGACAA-30 (MluI and XhoI endonu-

clease sites are underlined, respectively; the start and end of MARV GP ORF

direct and complementary sequences are italicized, respectively). To replace

VSV G with MARV GP, the resulting PCR product was cloned into pVSV-

XN2 using the unique MluI and XhoI endonuclease sites located between

the VSV G gene-start and gene-end signals and flanking its ORF, resulting in

the plasmid pVSV/GP-Uganda. To recover the recombinant virus, 1 3 106

BSR-T7 cells, kindly provided by Dr. Ursula Buchholz (U.S. National Institute

of Allergy and Infectious Diseases), were transfected with the following plas-

mids: pVSV/GP-Uganda, 5 mg, pBS-N, 1.5 mg, pBS-P, 2.5 mg, pBS-L, 1 mg,

and pC-T7, 5 mg. After 48 hr, transfected BSR-T7 cells were collected with a

cell scraper and transferred, along with the supernates, to Vero E6 cell mono-

layers for amplification of the recovered VSV/GP-Uganda.
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Generation of Human Hybridomas Secreting Monoclonal Antibodies

Peripheral blood mononuclear cells (PBMCs) from the donor were isolated

with Ficoll-Histopaque by density gradient centrifugation. The cells were cry-

opreserved immediately and stored in the vapor phase of liquid nitrogen until

use. Previously cryopreserved samples were thawed, and ten million PBMCs

were plated into 384-well plates (Nunc #164688) using 17 ml of cell culture

medium (ClonaCell-HY Medium A, StemCell Technologies, #03801), 8 mg/ml

of the TLR agonist CpG (phosphorothioate-modified oligodeoxynucleotide

ZOEZOEZZZZZOEEZOEZZZT, Invitrogen), 3 mg/ml of the Chk2 inhibitor

(Sigma #C3742), 1 mg/ml of cyclosporine A (Sigma #C1832), and 4.5 ml of clar-

ified supernate from cultures of B95.8 cells (ATCC VR-1492) containing

Epstein-Barr virus (EBV). After 7 days, cells from each 384-well culture plate

were expanded into four 96-well culture plates (Falcon #353072) using cell cul-

ture medium containing 8 mg/ml CpG, 3 mg/ml Chk2i, and ten million irradiated

heterologous human PBMCs (Nashville Red Cross) and incubated for an addi-

tional 4 days. Plates were screened for MARV antigen-specific antibody-

secreting cell lines using ELISAs. Cells from wells with supernates reacting

in a MARV antigen ELISA were fused with HMMA2.5 myeloma cells using an

established electrofusion technique (Yu et al., 2008). After fusion, hybridomas

were resuspended in medium containing 100 mM hypoxanthine, 0.4 mM

aminopterin, 16 mM thymidine (HAT Media Supplement, Sigma #HO262),

and 7 mg/ml ouabain (Sigma #O3125) and incubated for 18 days before

screening hybridomas for antibody production by ELISA.

Human mAb and Fab Production and Purification

After fusion with HMMA2.5 myeloma cells, hybridomas producing MARV-spe-

cific antibodies were cloned biologically by two rounds of limiting dilution and

by single-cell fluorescence-activated cell sorting. After cloning, hybridomas

were expanded in post-fusion medium (ClonaCell-HY Medium E, STEMCELL

Technologies #03805) until 50% confluent in 75-cm2 flasks (Corning #430641).

For antibody production, cells from one 75-cm2 flask were collected with a cell

scraper and expanded to four 225-cm2 flasks (Corning #431082) in serum-free

medium (Hybridoma-SFM, GIBCO #12045-076). After 21 days, supernates

were clarified by centrifugation and sterile filtered using 0.2-mm pore size filter

devices. HiTrap Protein G or HiTrap MabSelectSure columns (GE Healthcare

Life Sciences #17040501 and #11003494, respectively) were used to purify

antibodies from filtered supernates. Fab fragments were generated by

papain digestion (Pierce Fab Preparation Kit, Thermo Scientific #44985) and

purified by chromatography using a two-column system in which the first

column contained protein G resin (GE Healthcare Life Sciences #29048581)

and the second column contained either anti-kappa or anti-lambda antibody

light chain resins (GE Healthcare Life Sciences #17545811 and #17548211,

respectively).

Expression and Purification of MARV and EBOV GPs

Angola strain MARV GP ectodomains, containing the mucin-like domain

(MARV GP) or lacking residues 257–425 of the mucin-like domain (MARV

GPDmuc), were used to screen supernates of transformed B cells and human

hybridomas separately. Recombinant proteins for Ravn strain cleaved GP,

EBOVMayinga strain GP, EBOVMayinga strain GPDmuc, and EBOVMayinga

strain cleaved GP were designed and expressed similarly. Large-scale pro-

duction of recombinant GP or GPDmuc was performed by transfection of

Drosophila Schneider 2 (S2) cells with modified pMTpuro vectors, followed

by stable selection of transfected cells with 6 mg/ml puromycin. Secreted GP

ectodomain expression was induced with 0.5 mM CuSO4 for 4 days. Proteins

were engineered with a modified double strep tag at the C terminus (enteroki-

nase cleavage site followed by a strep tag/linker/strep tag) to facilitate purifi-

cation using Strep-Tactin resin (QIAGEN #2-1201). Proteins were purified

further by Superdex 200 size-exclusion chromatography in 10 mM Tris and

150 mM NaCl (pH 7.5) (13 TBS).

Lysates of MARV-Infected Cells

Lysates were prepared as previously described (Ksiazek et al., 1999). Briefly,

Vero E6 cell monolayers in 850 cm2 roller bottles were inoculated with approx-

imately 106 PFUMARV or EBOV and incubated at 37�C until partial destruction

of monolayer occurred (approximately 9–10 days). Cell monolayers were de-

tached using 3-mm glass beads, and cell suspensions were centrifuged at
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16,0003 g for 10 min at 4�C. Supernates were discarded; cell pellets were re-

suspended in 103 excess of borate buffer saline (10mMNa2B4O7 and 150mM

NaCl [pH 9.0]) and centrifuged at 16,000 3 g for 10 min at 4�C. Supernates
were discarded; cell pellets were resuspended in cold 1% Triton X-100 (Fisher

Scientific) in borate buffer saline, vortexed, and gamma-irradiated on dry ice at

53 106 rad. The lysates were sonicated with a 600 W Tekmar Sonic Disruptor

TM600 (Tekmar) using a cuphorn sonicator at maximum power setting and

50% duty cycle for 10 min and centrifuged at 16,000 3 g, and the supernates

were aliquoted.

Screening ELISA

ELISA plates were coated with lysates of MARV-infected cells (diluted 1:1,000

in Dulbecco’s PBS [DPBS]) or recombinant MARV GP or MARV GPDmuc pro-

teins (20 mg in 10 ml DPBS per plate) and incubated at 4�C overnight. Plates

were blocked with 100 ml of blocking solution/well for 1 hr. Blocking solution

consisted of 10 g powdered milk, 10 ml of goat serum, 100 ml of 103

DPBS, and 0.5 ml of Tween-20 mixed to a 1 l final volume with distilled water.

The presence of antibodies bound to the GP was determined using goat anti-

human immunoglobulin G (IgG) horseradish peroxidase-conjugated second-

ary antibodies (Southern Biotech #2040-05, 1:4,000 dilution) and 1-Step Ultra

TMB-ELISA substrate (Thermo Scientific #34029), with optical density read at

450 nM after stopping the reaction with 1M HCl.

Half-Maximal Effective Concentration Binding Analysis

MARV or EBOV GPs, MARV or EBOV GPDmuc, or Ravn or EBOV cathepsin-

cleaved GPs were coated onto 384-well plates (Thermo Scientific Nunc

#265203) in DPBS at 2 mg/ml overnight, then antigen was removed, and plates

were blocked with blocking solution made as above. Antibodies were applied

to the plates at a concentration range of 1.5 mg/ml to 270 ng/ml (binding

groups #1, #2, and 3A) and 0.1 mg/ml to 10 ng/ml (binding group #3B) using

3-fold serial dilutions. The presence of antibodies bound to the GP was deter-

mined using goat anti-human IgG alkaline phosphatase conjugate (Meridian

Life Science #W99008A, 1:4,000 dilution) and p-nitrophenol phosphate sub-

strate tablets (Sigma #S0942), with optical density read at 405 nM after

120 min. A non-linear regression analysis was performed on the resulting

curves using Prism (v. 5) (GraphPad) to calculate EC50 values.

MARV and EBOV Neutralization Experiments

Dilutions of mAbs in triplicate were mixed with 150 PFU of MARV or EBOV

expressing eGFP in MEM containing 10% fetal bovine serum (FBS) (HyClone)

and 50 mg/ml gentamicin (Cellgro #30-005-CR) with or without 5% guinea

pig complement (MP Biomedicals #642836) in a total volume of 0.1 ml

and incubated for 1 hr at 37�C for virus neutralization. Following neutralization,

virus-antibody mixtures were placed on monolayers of Vero E6 cells in 24-well

plates, incubated for 1 hr at 37�C for virus adsorption, and overlayedwithMEM

containing 2% FBS and 0.8% methylcellulose (Sigma-Aldrich #M0512). After

incubation for 5 days, medium was removed, cells were fixed with 10%

formalin (Fisher Scientific #245-684), and plates were sealed in plastic bags

and incubated for 24 hr at room temperature. Sealed plates were taken out

of the BSL-4 laboratory according to approved SOPs, and monolayers were

washed three times with PBS. Viral plaques were immunostained with the

serum of rabbits that had been hyperimmunized with MARV, or with a mAb

against EBOV, clone 15H10 (BEI Resources #NR-12184). Alternatively,

following virus adsorption, monolayers were covered with MEM containing

10% FBS and 1.6% tragacanth (Sigma-Aldrich #G1128). After incubation for

14 days, medium was removed, cells were fixed with 10% formalin, and plates

were sealed in plastic bags, incubated for 24 hr at room temperature, and

taken out of the BSL-4 laboratory as above. Fixed monolayers were stained

with 10% formalin containing 0.25% crystal violet (Fisher Scientific #C581-

100), and plaques were counted.

VSV-MARV and VSV-EBOV Neutralization Tests

Neutralization assays were performed in triplicate, as described above for

MARV and EBOV. Following neutralization, virus-antibody mixtures were

placed on monolayers of Vero E6 cells in duplicate, incubated for 1 hr at

37�C for virus adsorption, and overlayed with MEM containing 2% FBS con-

taining 0.9% methylcellulose. After incubation for 3 days, medium was



removed, monolayers were fixed and stained with 10% formalin containing

0.25% crystal violet, and plaques were counted.

Generation and Sequencing of VSV/GP-Uganda Escape Mutants

Vero E6 cell monolayers with 2-fold dilutions of mAbs (12.5–200 mg/ml) added

to the medium were inoculated with 200 PFU of recombinant VSV/GP-Uganda

and incubated at 37�C for 2–4 days. To determine which samples contained

live virus, supernates were collected, virus was titrated in Vero E6 cell mono-

layers under methylcellulose overlay, monolayers were incubated at 37�C for

3–4 days, and plaques were counted. Supernates with the highest concentra-

tions of mAbs, which were found to contain live virus by plaque titration, were

incubated in presence of serially diluted mAbs, followed by titration of virus as

above. The procedure was performed a total of three times. Escape mutant

viruses harvested after the third passage were cloned biologically by plaque

purification. For biological cloning, Vero E6 cell monolayers in 24-well plates

were inoculated with dilutions of the escape mutant viruses in the presence

of the corresponding mAbs (200 mg/ml of MR72 or 100 mg/ml of MR78) and

covered with 0.7% low melting temperature SeaPlaque agarose (Lonza

#50100). Monolayers were incubated at 37�C for 6 days; plaques were visual-

ized with 0.01% neutral red aqueous solution (Electron Microscopy Sciences),

picked, resuspended in medium, and transferred to Vero E6 cell monolayers in

24-well plates in the presence of the corresponding mAbs (200 mg/ml of MR72

or 100 mg/ml of MR78) for virus propagation. In 2–5 days, based on the extent

of CPE observed, virus was harvested, and cells were dissolved in Trizol re-

agent (Life Technologies 315596018). Total cellular RNA was extracted,

reverse transcribed, and amplified by PCR with the primers described above

for generation of a chimeric strain of VSV. Two overlapping fragments

covering MARV GP ORF were PCR amplified from cDNA using forward primer

50-CATGTACGACGCGTCAACATGAGGACTA-30 and reverse primer 50-ACT
AAGCCCTGCTGCCAGGT-30 or forward primer 50-ACAACAATGTACCGAGG

CAA-30 and reverse primer 50-TCTAGCAGCTCGAGCTATCCAATATATTTAG

TAAAGATACGACAA-30, and the nucleotide sequences of the GP ORFs

were determined using standard procedures.

Analysis of Growth Kinetics of VSV/GP-Uganda Escape Mutant

Viruses

Vero E6 cell monolayers in 24-well plates were inoculated in triplicate with

VSV/GP-Uganda escape mutants or non-mutated virus at an MOI of

0.00025 PFU/cell in the presence of varying concentrations of the correspond-

ing mAbs. Aliquots of medium were collected every 12 hr and frozen for titra-

tion at a later time. Titration of virus in aliquots was performed as above,

without adding antibodies to the culture medium.

Biolayer Interferometry Competition Binding Assay

Biotinylated GP or GPDmuc (EZ-link Micro NHS-PEG4-Biotinylation Kit,

Thermo Scientific #21955) (1 mg/ml) was immobilized onto streptavidin-coated

biosensor tips (ForteBio #18-5019) for 2 min. After measuring the baseline

signal in kinetics buffer (KB; 13 PBS, 0.01% BSA, and 0.002% Tween 20)

for 2 min, biosensor tips were immersed into the wells containing primary anti-

body at a concentration of 100 mg/ml for 10 min. Biosensors then were

immersed into wells containing competing mAbs at a concentration of

100 mg/ml for 5min. The percent binding of the competingmAb in the presence

of the first mAb was determined by comparing the maximal signal of

competing mAb applied after the first mAb complex to the maximal signal of

competing mAb alone. MAbs were judged to compete for binding to the

same site if maximum binding of the competing mAb was reduced to <30%

of its un-competed binding. MAbs were considered non-competing if

maximum binding of the competing mAb was >70% of its un-competed bind-

ing. A level of 30%–70% of its un-competed binding was considered interme-

diate competition.

Sequence Analysis of Antibody Variable Region Genes

Total cellular RNAwas extracted from clonal hybridomas that producedMARV

antibodies, andRT-PCR reaction was performed usingmixtures of primers de-

signed to amplify all heavy-chain or light-chain antibody variable regions. The

generated PCR products were purified and cloned into the pJet 1.2 plasmid

vector (Thermo Scientific, #K1231) for sequence analysis. The nucleotide se-
quences of plasmid DNAs were determined using an ABI3700 automated

DNA sequencer. Heavy-chain or light-chain antibody variable region se-

quences were analyzed using the IMGT/V-Quest program (Brochet et al.,

2008; Giudicelli et al., 2011). The analysis involved the identification of germline

genes that were used for antibody production, location of complementary

determining regions (CDRs), and framework regions (FRs), as well as the num-

ber and location of somatic mutations that occurred during affinity maturation.

Statistical Analysis

EC50 values for neutralization were determined by finding the concentration of

mAb at which a 50% reduction in plaque counts occurred after incubation of

virus with neutralizing antibody. A logistic curve was fit to the data using the

count as the outcome and the log-concentration as the predictor variable.

The results of the model then were transformed back to the concentration

scale. Results are presented as the concentration at the dilution that achieves

a 50% reduction from challenge control with accompanying 95% confidence

intervals. Each antibody was treated as a distinct analysis in a Bayesian non-

linear regression model.

Sample Preparation for EM Studies

A Ravn strain MARV GPmucin-deleted construct (GPDmuc) was produced by

stable cell line expression in Drosophila S2 cells, as described above. Human

Fab proteins for MARV-specific antibodies were generated as described

above. Fabs were added in molar excess to GPDmuc and allowed to incubate

overnight at 4�C. Complexes then were purified by Superdex 200 size-exclu-

sion chromatography in TBS.

Electron Microscopy and Sample Preparation

A 4 ml aliquot of each complex that had been diluted to a concentration

of �0.03 mg/ml with TBS buffer was placed for 15 s onto carbon-coated

400 Cu mesh grids that had been plasma cleaned for 20 s (Gatan), blotted

off on the edge of the grid, and then immediately stained for 30 s with 4 ml of

2% uranyl formate. The stain was blotted off on the edge of the grid, and the

grid was allowed to dry. Data were automatically collected with Leginon (Car-

ragher et al., 2000; Potter et al., 1999; Suloway et al., 2005) using a FEI Tecnai

F20 electron microscope operating at 120 keV with an electron dose of

30 e�/Å2 and a magnification of 52,0003 that resulted in a pixel size of

2.65 Å at the specimen plane when collected with Tietz CMOS 4k 3 4k CCD

camera. Particle orientations appeared to be generally isotropic, and images

were acquired at a constant defocus value of �1.0 mm at 0� stage tilt.

Image Processing of Protein Complexes

Particles were picked automatically using DoG Picker (34) and placed into a

particle stack using the Appion software (Lander et al., 2009). Reference-

free 2D class averages were generatedwith the Xmipp clustering 2D alignment

software (van Heel et al., 1996) and sorted into an initial 300 classes. Non-GP

particles were removed, and the stack was further subclassified into classes

with �100 particles per class in order to generate the final particle stack

used for the reconstruction. Various numbers of class averages were chosen

to create initial models using EMAN2 common lines software (Tang et al.,

2007). A model that best matched its projected classes was then used for

refinement against the raw particle stack, imposing C3 symmetry, and the

reconstruction was generated with ten rounds of refinement and increasingly

smaller angular sampling rates with EMAN2 (Tang et al., 2007). All model fitting

andmanipulation was completed using UCSF Chimera (Pettersen et al., 2004).

In Vivo Testing

The animal protocol for testing of mAbs in mice was approved by the Institu-

tional Animal Care and Use Committee of the University of Texas Medical

Branch at Galveston. Seven-week-old BALB/c mice (Harlan) were placed in

the ABSL-4 facility of the Galveston National Laboratory. Groups of mice at

five animals per group were injected with individual mAbs by the intraperito-

neal route twice: 1 hr prior and 24 hr after MARV challenge, using 100 mg

per treatment. Untreated animals served as controls. For the challenge,

mice were injected with 1,000 PFU of the mouse-adapted MARV strain Ci67

by the intraperitoneal route. Animals were weighed and monitored daily over

the 3-week period after challenge. Once animals were symptomatic, they
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were examined twice per day. The disease was scored using the following

parameters: dyspnea (possible scores 0–5), recumbency (0–9), unresponsive-

ness (0–5), and bleeding/hemorrhage (0–5); the individual scores for each

animal were summarized.
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Brauburger, K., Hume, A.J., Mühlberger, E., and Olejnik, J. (2012). Forty-five

years of Marburg virus research. Viruses 4, 1878–1927.

Brochet, X., Lefranc,M.P., andGiudicelli, V. (2008). IMGT/V-QUEST: the highly

customized and integrated system for IG and TR standardized V-J and V-D-J

sequence analysis. Nucleic Acids Res. 36, W503–W508.

Carette, J.E., Raaben, M., Wong, A.C., Herbert, A.S., Obernosterer, G., Mul-

herkar, N., Kuehne, A.I., Kranzusch, P.J., Griffin, A.M., Ruthel, G., et al.
902 Cell 160, 893–903, February 26, 2015 ª2015 Elsevier Inc.
(2011). Ebola virus entry requires the cholesterol transporter Niemann-Pick

C1. Nature 477, 340–343.

Carragher, B., Kisseberth, N., Kriegman, D., Milligan, R.A., Potter, C.S., Pulo-

kas, J., and Reilein, A. (2000). Leginon: an automated system for acquisition of

images from vitreous ice specimens. J. Struct. Biol. 132, 33–45.

Centers for Disease Control and Prevention (CDC) (2009). Imported case of

Marburg hemorrhagic fever - Colorado, 2008. MMWR Morb. Mortal. Wkly.

Rep. 58, 1377–1381.

Chandran, K., Sullivan, N.J., Felbor, U., Whelan, S.P., and Cunningham, J.M.

(2005). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for

infection. Science 308, 1643–1645.

Cook, J.D., and Lee, J.E. (2013). The secret life of viral entry glycoproteins:

moonlighting in immune evasion. PLoS Pathog. 9, e1003258.
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replication-competent vesicular stomatitis virus vectors expressing glycopro-

teins of filoviruses and arenaviruses. J. Virol. 78, 5458–5465.

Giudicelli, V., Brochet, X., and Lefranc, M.P. (2011). IMGT/V-QUEST: IMGT

standardized analysis of the immunoglobulin (IG) and T cell receptor (TR)

nucleotide sequences. Cold Spring Harb Protoc 2011, 695–715.

Hashiguchi, T., Fusco, M.L., Bornholdt, Z.A., Lee, J.E., Flyak, A.I., Matsuoka,

R., Kohda, D., Yanagi, Y., Hammel, M., Crowe, J.E., Jr., and Saphire, E.O.

(2015). Structural basis for Marburg virus neutralization by a cross-reactive hu-

man antibody. Cell 160, this issue, 904–912.

Johnson, E.D., Johnson, B.K., Silverstein, D., Tukei, P., Geisbert, T.W., San-

chez, A.N., and Jahrling, P.B. (1996). Characterization of a new Marburg virus

isolated from a 1987 fatal case in Kenya. Arch. Virol. Suppl. 11, 101–114.

Kajihara, M., Marzi, A., Nakayama, E., Noda, T., Kuroda, M., Manzoor, R., Mat-

suno, K., Feldmann, H., Yoshida, R., Kawaoka, Y., and Takada, A. (2012).

Inhibition of Marburg virus budding by nonneutralizing antibodies to the enve-

lope glycoprotein. J. Virol. 86, 13467–13474.

Ksiazek, T.G., West, C.P., Rollin, P.E., Jahrling, P.B., and Peters, C.J. (1999).

ELISA for the detection of antibodies to Ebola viruses. J. Infect. Dis. 179

(Suppl 1), S192–S198.

Lander, G.C., Stagg, S.M., Voss, N.R., Cheng, A., Fellmann, D., Pulokas, J.,

Yoshioka, C., Irving, C., Mulder, A., Lau, P.W., et al. (2009). Appion: an

integrated, database-driven pipeline to facilitate EM image processing.

J. Struct. Biol. 166, 95–102.

Lee, J.E., Fusco, M.L., Hessell, A.J., Oswald, W.B., Burton, D.R., and Saphire,

E.O. (2008). Structure of the Ebola virus glycoprotein bound to an antibody

from a human survivor. Nature 454, 177–182.

Lubaki, N.M., Ilinykh, P., Pietzsch, C., Tigabu, B., Freiberg, A.N., Koup, R.A.,

and Bukreyev, A. (2013). The lack of maturation of Ebola virus-infected den-

dritic cells results from the cooperative effect of at least two viral domains.

J. Virol. 87, 7471–7485.

Maruyama, T., Rodriguez, L.L., Jahrling, P.B., Sanchez, A., Khan, A.S., Nichol,

S.T., Peters, C.J., Parren, P.W., and Burton, D.R. (1999). Ebola virus can be

http://dx.doi.org/10.1016/j.cell.2015.01.031


effectively neutralized by antibody produced in natural human infection.

J. Virol. 73, 6024–6030.

Marzi, A., Yoshida, R., Miyamoto, H., Ishijima, M., Suzuki, Y., Higuchi, M., Mat-

suyama, Y., Igarashi, M., Nakayama, E., Kuroda, M., et al. (2012). Protective

efficacy of neutralizing monoclonal antibodies in a nonhuman primate model

of Ebola hemorrhagic fever. PLoS ONE 7, e36192.

Murin, C.D., Fusco, M.L., Bornholdt, Z.A., Qiu, X., Olinger, G.G., Zeitlin, L.,

Kobinger, G.P., Ward, A.B., and Saphire, E.O. (2014). Structures of protective

antibodies reveal sites of vulnerability on Ebola virus. Proc. Natl. Acad. Sci.

USA 111, 17182–17187.

Nanbo, A., Imai,M.,Watanabe, S., Noda, T., Takahashi, K., Neumann, G., Half-

mann, P., and Kawaoka, Y. (2010). Ebolavirus is internalized into host cells via

macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 6,

e1001121.

Olinger, G.G., Jr., Pettitt, J., Kim, D., Working, C., Bohorov, O., Bratcher, B.,

Hiatt, E., Hume, S.D., Johnson, A.K., Morton, J., et al. (2012). Delayed treat-

ment of Ebola virus infection with plant-derived monoclonal antibodies pro-

vides protection in rhesus macaques. Proc. Natl. Acad. Sci. USA 109,

18030–18035.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M.,

Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera—a visualization system

for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

Pettitt, J., Zeitlin, L., Kim, D.H., Working, C., Johnson, J.C., Bohorov, O.,

Bratcher, B., Hiatt, E., Hume, S.D., Johnson, A.K., et al. (2013). Therapeutic

intervention of Ebola virus infection in rhesus macaques with the MB-003

monoclonal antibody cocktail. Sci. Transl. Med 5, 199ra113.

Potter, C.S., Chu, H., Frey, B., Green, C., Kisseberth, N., Madden, T.J., Miller,

K.L., Nahrstedt, K., Pulokas, J., Reilein, A., et al. (1999). Leginon: a system for

fully automated acquisition of 1000 electron micrographs a day. Ultramicro-

scopy 77, 153–161.

Qiu, X., Audet, J., Wong, G., Pillet, S., Bello, A., Cabral, T., Strong, J.E., Plum-

mer, F., Corbett, C.R., Alimonti, J.B., et al. (2012). Successful treatment of

Ebola virus-infected cynomolgus macaques with monoclonal antibodies.

Sci. Trans. Med 4, 138ra181–138ra181.

Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J.B., Fausther-

Bovendo, H., Wei, H., Aviles, J., Hiatt, E., et al. (2014). Reversion of advanced

Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53.

Saeed, M.F., Kolokoltsov, A.A., Albrecht, T., and Davey, R.A. (2010). Cellular

entry of ebola virus involves uptake by a macropinocytosis-like mechanism

and subsequent trafficking through early and late endosomes. PLoS Pathog.

6, e1001110.

Saphire, E.O. (2013). An update on the use of antibodies against the filoviruses.

Immunotherapy 5, 1221–1233.

Smith, D.H., Johnson, B.K., Isaacson, M., Swanapoel, R., Johnson, K.M.,

Killey, M., Bagshawe, A., Siongok, T., and Keruga, W.K. (1982). Marburg-virus

disease in Kenya. Lancet 1, 816–820.
Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J.,

Stagg, S., Potter, C.S., and Carragher, B. (2005). Automated molecular micro-

scopy: the new Leginon system. J. Struct. Biol. 151, 41–60.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke,

S.J. (2007). EMAN2: an extensible image processing suite for electron micro-

scopy. J. Struct. Biol. 157, 38–46.

Thomas, D., Newcomb, W.W., Brown, J.C., Wall, J.S., Hainfeld, J.F., Trus,

B.L., and Steven, A.C. (1985). Mass and molecular composition of vesicular

stomatitis virus: a scanning transmission electron microscopy analysis.

J. Virol. 54, 598–607.

Towner, J.S., Paragas, J., Dover, J.E., Gupta, M., Goldsmith, C.S., Huggins,

J.W., and Nichol, S.T. (2005). Generation of eGFP expressing recombinant

Zaire ebolavirus for analysis of early pathogenesis events and high-throughput

antiviral drug screening. Virology 332, 20–27.

Towner, J.S., Khristova, M.L., Sealy, T.K., Vincent, M.J., Erickson, B.R.,

Bawiec, D.A., Hartman, A.L., Comer, J.A., Zaki, S.R., Ströher, U., et al.
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